| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 
 | clc;clear;close all;
 
 l1 = 92.4;
 l6 = 350;
 l3 = 757.4;
 omegal1 = -2.4*pi;
 H1 = 100;
 G3 = 200;
 G5 = 700;
 J_s3 = 1.1;
 l_s3 = l3/2;
 g = 10;
 
 
 disp("代码说明:x右为0度,涉及转动的,逆时针为正,笛卡尔坐标系")
 
 
 ifzu = input('你是组长吗?,是为1,不是为0\n');
 if ifzu == 1
 MyPar = parpool;
 ifzhouqi = input('周期绘图?,是为1,不是为0\n');
 
 if ifzhouqi == 1
 nzhouqi = input('几个周期?\n');
 v = [];
 a = [];
 s = [];
 Mb = [];
 for i = -nzhouqi*2:0.01:0
 phy1 = pi*i;
 [vi,ai,si,Mb_i] = sol_wzr(l1,l6,l3,omegal1,phy1,G5,G3,g,l_s3,J_s3);
 v = [v,vi];
 a = [a,ai];
 s = [s,si];
 Mb = [Mb,Mb_i];
 end
 phy1_n = (-nzhouqi*2:0.01:0)*pi;
 end
 if ifzhouqi == 0
 v = [];
 a = [];
 s = [];
 Mb = [];
 for i = -2:0.001:0
 phy1 = pi*i;
 [vi,ai,si,Mb_i] = sol_wzr(l1,l6,l3,omegal1,phy1,G5,G3,g,l_s3,J_s3);
 v = [v,vi];
 a = [a,ai];
 s = [s,si];
 Mb = [Mb,Mb_i];
 end
 phy1_n = (-2:0.001:0)*pi;
 end
 
 
 
 set(gcf, 'Color', [1 1 1]);
 subplot(2,2,1)
 plot(phy1_n,v,'LineWidth',1.5,'Color','b')
 title("速度分析",'FontSize',14)
 xlabel('曲柄转角\theta_1/rad','FontSize',12)
 ylabel('刨刀速度v/(m/s)','FontSize',12)
 hold on;
 grid on;
 axis tight;
 set(gca, 'XDir', 'reverse');
 set(gca, 'FontSize', 12)
 legend('速度','Location','best')
 
 subplot(2,2,2)
 plot(phy1_n,a,'LineWidth',1.5,'Color','r')
 title("加速度分析",'FontSize',14)
 xlabel('曲柄转角\theta_1/rad','FontSize',12)
 ylabel('刨刀加速度a/(mm/s^2)','FontSize',12)
 hold on;
 grid on;
 axis tight;
 set(gca, 'XDir', 'reverse');
 set(gca,'FontSize',12)
 legend('加速度','Location','best')
 
 subplot(2,2,3)
 plot(phy1_n,s,'LineWidth',1.5,'Color','g')
 title("位移分析",'FontSize',14)
 xlabel('曲柄转角\theta_1/rad','FontSize',12)
 ylabel('刨刀位移s/mm','FontSize',12)
 hold on;
 grid on;
 axis tight;
 set(gca, 'XDir', 'reverse');
 set(gca,'FontSize',12)
 legend('位移','Location','best')
 
 subplot(2,2,4)
 plot(phy1_n,Mb,'LineWidth',1.5,'Color','k')
 title("平衡力矩分析",'FontSize',14)
 xlabel('曲柄转角\theta_1/rad','FontSize',12)
 ylabel('平衡力矩Mb/Nm','FontSize',12)
 hold on;
 grid on;
 axis tight;
 set(gca, 'XDir', 'reverse');
 set(gca,'FontSize',12)
 legend('平衡力矩','Location','best')
 delete(gcp('nocreate'));
 pause;
 end
 if ifzu == 0
 
 phy_for_you = input('输入你的角度(角度制),逆时针为正\n');
 phy1_wzr = phy_for_you*pi/180;
 [v_my,a_my,s_my,Mb_my,omegal3_my,alpha3_my,R_34_my,P_I3_my,M_I3_my,R_21_my] = sol_wzr(l1,l6,l3,omegal1,phy1_wzr,G5,G3,g,l_s3,J_s3)
 pause;
 end
 
 function [v,a,s,Mb,omegal3,alpha3,R_34,P_I3,M_I3,R_21] = sol_wzr(l1,l6,l3,omegal1,phy1,G5,G3,g,l_s3,J_s3)
 
 
 sb = sqrt((l1*cos(phy1))^2 + (l6+l1*sin(phy1))^2);
 
 phy3 = acos(l1*cos(phy1)/sb);
 
 sol1 = [cos(phy3) -sb*sin(phy3);...
 sin(phy3) sb*cos(phy3)]\(omegal1 * l1*[-sin(phy1);cos(phy1)]);
 omegal3 = sol1(2);
 v23 = sol1(1);
 
 sol2 = [cos(phy3) -sb*sin(phy3);...
 sin(phy3)  sb*cos(phy3)]\...
 (-[-omegal3*sin(phy3) -v23*sin(phy3)-sb*omegal3*cos(phy3);...
 omegal3*cos(phy3) v23*cos(phy3)-sb*omegal3*sin(phy3)]*sol1 ...
 - omegal1^2*l1*[cos(phy1);sin(phy1)]);
 alpha3 = sol2(2);
 
 vd = -omegal3*l3;
 v = vd*sin(phy3);
 a = -omegal3^2*l3*cos(phy3) - alpha3*l3*sin(phy3);
 s = l3*cos(phy3)+200;
 
 
 
 phy_cha = mod(phy1,-2*pi);
 if (phy_cha<-15.31*pi/180) && (phy_cha>-(180-15.31)*pi/180)
 F_r = 0;
 else
 F_r = -4500;
 end
 R_34 = -F_r - G5*(-a)*(1e-3)/g;
 
 R_43 = - R_34;
 
 a_s3x = -l_s3*(1e-3)*(omegal3^2*cos(phy3)+alpha3*sin(phy3));
 a_s3y = -l_s3*(1e-3)*(omegal3^2*sin(phy3)-alpha3*cos(phy3));
 P_I3x = -G3*a_s3x/g;
 P_I3y = -G3*a_s3y/g;
 P_I3 = sqrt(P_I3x^2+P_I3y^2);
 M_I3 = -J_s3*alpha3;
 
 
 
 
 
 
 
 
 
 
 
 
 sol3 = [1 0 1 0;
 0 1 0 1;
 -(sb-l_s3)*(1e-3)*sin(phy3) (sb-l_s3)*(1e-3)*cos(phy3) l_s3*(1e-3)*sin(phy3) -l_s3*(1e-3)*cos(phy3);...
 cos(phy3) sin(phy3) 0 0]\[-P_I3x-R_43;
 -P_I3y+G3;
 R_43*l_s3*(1e-3)*sin(phy3)-M_I3;
 0];
 R_23x = sol3(1);
 R_23y = sol3(2);
 
 R_21x = -R_23x;
 R_21y = -R_23y;
 R_21 = sqrt(R_21x^2+R_21y^2);
 
 if phy_cha <=0 && phy_cha >=-pi/2
 Mb = -R_21x*l1*(1e-3)*abs(sin(phy1))-R_21y*l1*(1e-3)*abs(cos(phy1));
 end
 if phy_cha <-pi/2 && phy_cha >=-pi
 Mb = R_21x*l1*(1e-3)*abs(sin(phy1))-R_21y*l1*(1e-3)*abs(cos(phy1));
 end
 if phy_cha <-pi && phy_cha >=-3*pi/2
 Mb = -R_21x*l1*(1e-3)*abs(sin(phy1))-R_21y*l1*(1e-3)*abs(cos(phy1));
 end
 if phy_cha <-3*pi/2 && phy_cha >=-2*pi
 Mb = R_21x*l1*(1e-3)*abs(sin(phy1))-R_21y*l1*(1e-3)*abs(cos(phy1));
 end
 end
 
 |